

Rodless magnetic cylinders series P1Z

Ø 16, 20 and 32 mm

Catalogue: PDE2522TCUK-po

Page Content

Basic version

Description	4
General features	5
Technical informations	5
Diagrams of use	6
Dimensions	7
Mountings	8
Part number coding	9
Guided version	
Description	10
Range	11
General features	12
Technical informations	12
Options	12
Diagrams of use	13-14
Dimensions	15
Option external adjustable rubber bumpers	16
Option external hydraulic shock absorbers	16-17
Option rail	17
Detection	18
Part number coding	19
Interface with 3D® modular range	20

Mounting arrangements.......21-22

Important

Before attempting any external or internal work on the cylinder or any connected components, make sure the cylinder is vented and disconnect the air supply in order to ensure isolation of the air supply.

Please ensure that rodless cylinders are not used in environment with steel chips which may stop the carriage/piston displacement.

Air quality is essential for maximum cylinder service life (see ISO 8573)

Note

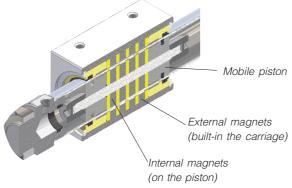
All technical data in this catalogue are typical data only.

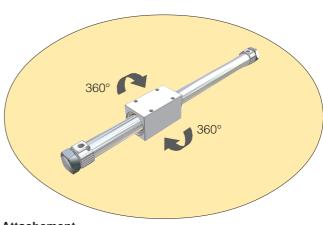
FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

SALE CONDITIONS

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered into by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).





Basic version

Description

The magnetic rodless cylinder is basically a pneumatic rodless cylinder featuring a mobile piston fitted with annular magnets.

The mobile carriage is also equipped with magnets to provide magnetic coupling (carriage/piston). The carriage slide freely along the main tube.

It incorporates the following features:

- end of stroke cushioning
- mounting :

on endplates on the carriage

Cushioning

Ø 16 mm : non adjustable rubber bumpers

 \varnothing 20 and 32 mm : adjustable pneumatic cushioning

Attachement

On cylinder endplates, on mobile carriage.

Mounting

The mobile carriage is free to rotate 360° around the cylinder axis. This feature facilitates the adaptation of cylinder to various mounting arrangements.

The load should be guided by an external device.

General features

Magnetic Rodless cylinder, basic version

They are available in 3 bores with possible stroke lengths from 0 up to 2000 mm.

Non adjustable Rubber bumpers on Ø 16 mm.

Adjustable Pneumatic cushioning on Ø 20 and 32 mm.

The load is fixed onto the mobile carriage by 4 tapped holes.

The cylinder is attached by ends with nuts, flanges or brackets.

Ø	16	20	32	
Stroke (mm)	0 to 1000	0 to 1500	0 to 2000	
Stroke tolerance (mm) 0 to 1000 mm		0/+1,5		
Stroke tolerance (mm) > 1000 mm		0/+2		
Repeatability (mm)	0,1	0,	03	
Temperature (C°)		-10 to 60		
Operation	D	Dry air lubricated or unlubricated		
Port size	M5	G1/8	G1/8	
Magnetic coupling force (N)	157	236	703	
Min. Max. speed (m/s)		0,1 to 0,4		
Min. operating pressure (bar)		1,8		
Max. operating pressure (bar)		7		
Cushioning stroke (mm)	_	17	15	
Weight (kg)				
Stroke 0 mm	0,28	0,46	1,35	
Extra./ mm	0,00043	0,00082	0,0014	

Technical data

Function	Description				
Carriage actuating	By magnetic coupling				
Carriage guiding	Exterior on tube by 2 bushes				
End of stroke stops	In cylinder endplates				
Cushioning	Rubber bumpers for Ø 16 mm, pneumatic for Ø 20 & 32 mm				
Position sensing along the stroke	Not forcasted				
Pneumatic connection	In tapped holes, on each cylinder endplate				
Lubrication	See conditions of use below				
Cylinder mounting	By nuts, flanges or brackets				
Load attachment on mobile carriage	By 4 tapped holes				
Material:					
Body:	Stainless steel tube				
Carriage :	Colourless anodized aluminium alloy (6060)				
Front and Rear Endplates:	Colourless anodized aluminium alloy (6060)				
Cylinder seals :	Nitrile				

Conditions of use

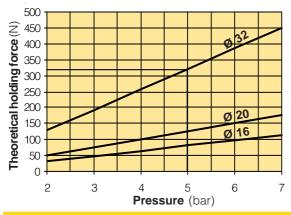
If extra lubrication is given, this must always be continued.

Working medium, air quality

Working medium Dry, filtered compressed air to ISO 8573-1

class 3. 4. 3. or better

Recommended air quality for cylinders


For best possible service life and trouble-free operation, ISO 8573-1. quality class 3.4.3 should be used. This means 5 μ m filter (standard filter), dew point +3 °C for indoor operation (a lower dew point should be selected for outdoor operation) and oil concentration 1.0 mg oil/ m³, which is what a standard compressor with a standard filter gives.

ISO 8573-1 qualtity classes

Quality class	maxi. prticules size (µm)	Pollution max. concentration (mg/m³)	Water max. pressure dew point (°C)	Oil max. concentration (mg/m³)
1	0,1	0,1	-70	0,01
2	1	1	-40	0,1
3	5	5	-20	1,0
4	15	8	+3	5,0
5	40	10	+7	25
6	-	-	+10	-

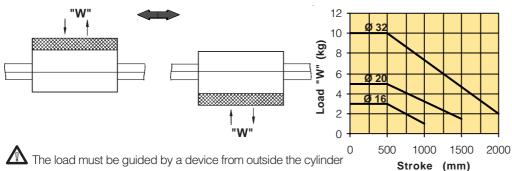
Pressure in the cylinder / Pneumatic holding force

Example:

Pressure: 5 bar

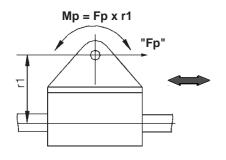
 $F_{mp} = 322 \text{ N for } \emptyset 32 \text{ mm cylinder}$

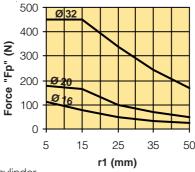
when the magnetic coupling force is 703 N


(constant value whatever the cylinder pressure used).

The maxi load to move should be lower to 322 N.

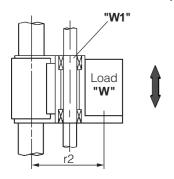
Calculate the kinetic energy due to the load moved


Load diagrams


Permissible radial loads, horizontal mounting

Ø	W maxi (kg)	
16	3	
20	5	
32	10	

Permissible axial loads, horizontal mounting



Ø M	Max. oment Mp (Nm)	Max. Fp* (N)	
16	1,2	112	
20	2,5	175	
32	8,5	450	

* at 7 bar

The load must be guided by a device from outside the cylinder

Permissible axial loads, vertical mounting

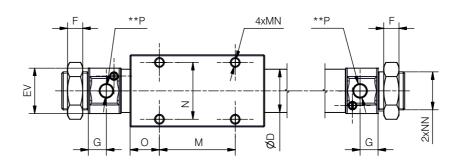
W = Load guided by external device W1 = Direct mounting onto the cylinder

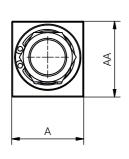
	30 -										
	30 - 25 - 20 - 15 -							Ø	32		
(g	25 -										
	20 -			/							
×	15 -										
-	10							Ø	20		
oac	10 -							α	16		
_	5 -			_		=	-	Ø	10	H	
	0 -										
	2	2	3	3	2	1	Ę	5	6	5	7
			Pressure (bar)								

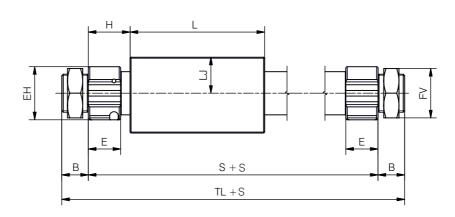
Ø	Max. load IWT* (kg)	Max. r2 (mm)
16	5	122
20	10	142
32	24	174

* at 6,5 bar

WT = Load weight + guiding device weight + friction effort

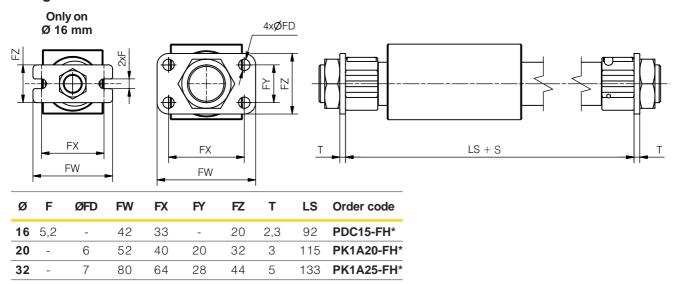



Dimensions

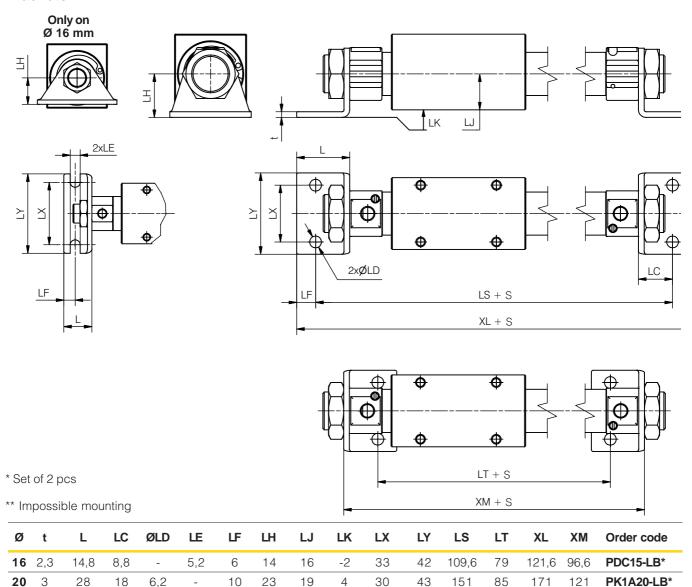

** = Air supply Ports

S = Stroke

x = Deep

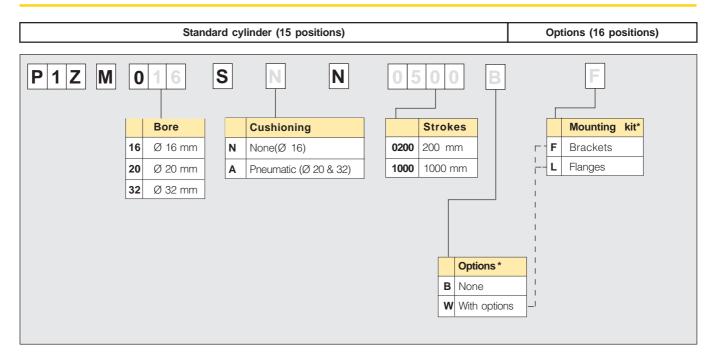


Ø	Α	AA	В	ØD	E	Ø EH	Ø EV	F	FV	G	Н	L	LJ	M	N	0
16	32	34	10	18	11	18	18	4	14	5,5	15,5	61	16	34	25	13,5
20	38	40	14	22,8	17	28	24	8	26	9,5	22	71	19	40	30	15,5
32	60	60	16	35	17	40	36	8	32	9,5	23	87	30	50	40	18,5


Ø	Р	MN	NN	S	TL
16	M5 x 0,8	M4 × 0,7 x 6	M10 x 1 x 6	92	112
20	G 1/8	M5 x 0,8 x 8	M20 x 1,5 x 7	115	143
32	G 1/8	M6 x 1 x 10	M26 x 1,5 x 7	133	165

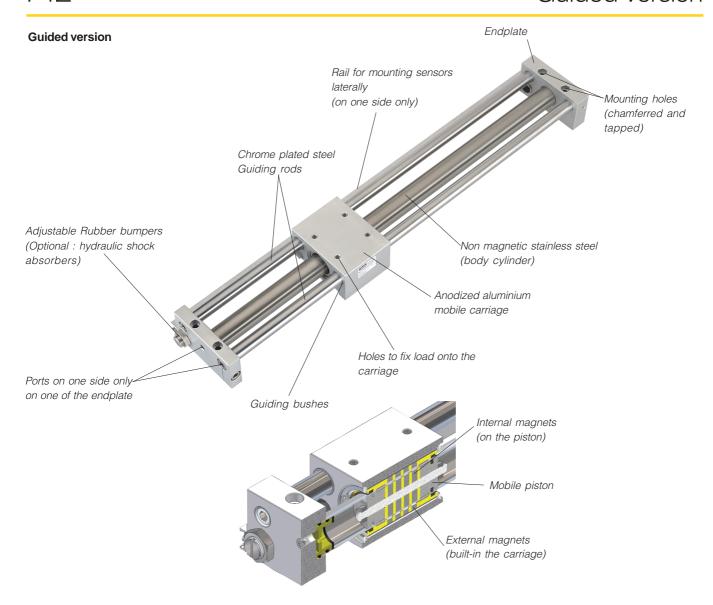
Mountings

Flanges



Brackets

PK1A25-LB*


* Cylinders are supplied with mounting nuts fitted on each end plate.

Ø	Stroke (mm)
16	0 to1000
20	0 to1500
32	0 to 2000

Order code examples:

- P1ZM016SNN0100B Ø 16 mm stroke 100 mm cylinder supplied with mounting nut on each end plate
- P1ZM020SAN1000WF Ø 20 mm stroke 1 m with mounting bracket on each end plate

Description

The magnetic rodless cylinder is basically a rodless cylinder featuring a mobile piston with annular magnets.

The mobile carriage is also equipped with magnets to give magnetic coupling (carriage/piston). The carriage slides along the main tube and is guided by twin guide rods

It incorporates the following features:

- guiding
- end of stroke cushioning
- detection
- mounting

Guidance

The guided version consists of a carriage fitted with 4 plain bearings, guided on 2 rods.

This design provides high regidity, accurate guidance and smooth movement of the carriage and thus the load.

Cushioning

Each endplate is fitted with a rubber bumper or auto-compensating hydraulic shock absorber absorbing impacts and controlling deceleration at the end of stroke.

Cylinder porting

Cylinder air supply is located on one end only to facilitate cylinder installation and avoid long tube lengths for long strokes.

Mounting

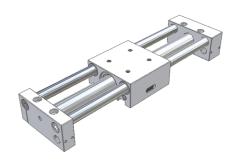
Mounting kits offer possible mounting arrangement to fit 3D® modular units onto the mobile carriage.

Options

The following options are available to enhance the Magnetic Rodless cylinder functions :

- External Rubber bumpers: when low operating or light loads and short strokes.
- External hydraulic shock absorbers: recommended for arduous applications.
- Rail and magneto-inductive sensors: provide data at the beginning, during and at the end of stroke.

Range

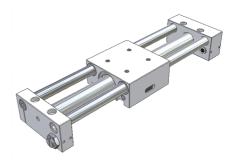

Magnetic Rodless Cylinder, guided version

Available in 3 diameters with possible strokes from 0 to 1500 mm.

Pneumatic air supply on one side only.

4 tapped holes permit to attach load onto the mobile carriage.

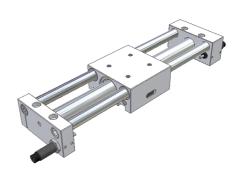
Mounting at the ends provided by 4 tapped and chamferred holes.



Options

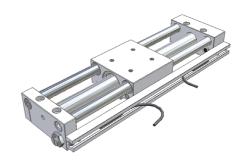
External adjustable Rubber bumpers

The can be fitted on cylinder endplates and provide cushioning and adjustment at the end of stroke.


Used when light loads and short strokes.

External hydraulic shock absorbers

Self-compensating hydraulic shock absorbers can be used instead of rubber bumpers for a greater cushioning at the end of stroke.


They are virtually recommended for arduous applications.

Magneto-inductive Sensors:

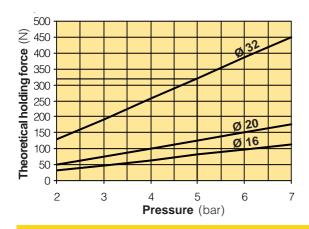
A guiding rail fitted on one side only of the cylinder provides mounting and position adjustment of sensors.

Mounting on same side as the end of stroke stops.

General features

Ø	16	20	32		
Stroke (mm)	0 to 750	0 to 1000	0 to 1500		
Stroke tolerance (mm) 0 à 1000 mm	0/+1,5				
Stroke tolerance (mm) > 1000 mm		0/+2			
Repeatability (mm)		0,03			
Temperature (C°)		0 to 60			
Operating		Ory air lubricated or unlubrica	ted		
Port connection	M5	G1/8	G1/8		
Max. force of magnetic coupling (N)	157	236	703		
Min. Max. speed (m/s)		0,1 to 0,4			
Min. operating pressure (bar)		2			
Max. operating pressure (bar)		7			
Weight (kg)					
Stroke 0 mm	0,9 1,52 3,63				
Extra/mm	0,002	0,003	0,0053		

Technical data


Function	Description					
Carriage actuation	By magnetic coupling					
Carriage guiding	On 2 chrome plated steel guiding rods					
End of stroke stops	Built-in endplates					
Cushioning	With adjustable rubber bumpers or hydraulic shock absorbers					
Sensing along stroke	Magnet fitted onto the mobile carriage and rail fixed on endplates					
Pneumatic connection	On one side only, in tapped holes					
Lubrication	See conditions of use page 5					
Cylinder fixing	By fixing holes in endplates					
Fixing load on mobile carriage	By 4 tapped holes					
Material:						
Body:	Stainless steel					
Plates and carriage:	Colourless anodized aluminium alloy (6060)					
Front and Rear endplates:	Colourless anodized aluminium alloy (6060)					
Guiding rods:	Chrome plated steel					
Guiding rings:	PTFE					
Cylinder seals :	Nitrile					

Options

Function	Description
Detection	Sensors mounting in T-slot Magnetic switches (reed) or 3-wires magneto-inductive sensors with direct indication on the detector
External rubber bumpers	Supplied pre-fitted in endplates
Hydraulic shock absorbers	Self-compensating shock absorbers supplied pre-fitted in endplates

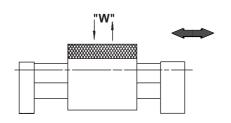
Pressure in the cylinder / Pneumatic holding force

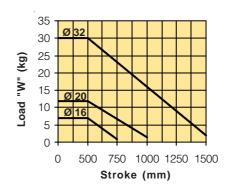
Example:

Pressure: 5 bar

 $F_{mp} = 322 \text{ N for } \emptyset 32 \text{ mm cylinder}$

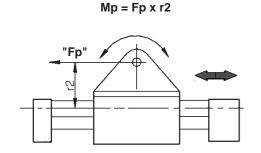
when the magnetic coupling force is 703 $\ensuremath{\text{N}}$

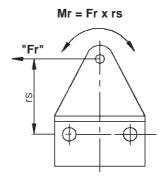

(constant value whatever the pressure in the cylinder is).

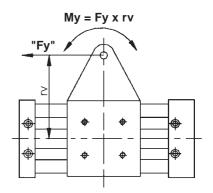

The maxi load to move should be lower to 322 N.

🗥 Calculate the kinetic energy due to the load moved

Loads diagram


Permissible radial loads, horizontal mounting



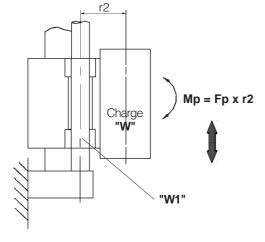


Ø	Max. W (kg)	
16	7	
20	12	
32	30	

Permissible axial loads, horizontal mounting

Ø	Max. moment Mp (Nm)	Max. moment Mr (Nm)	Max. moment My (Nm)	Max. r2 (mm)	Max. rs (mm)	Max. rv (mm)
16	2,4	0,5	2,4	130	100	100
20	5	1	5	150	132	132
32	15	3	15	182	192	192

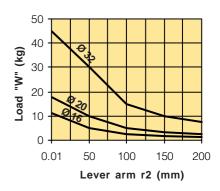


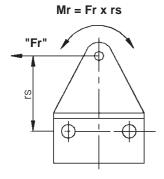

Loads diagram

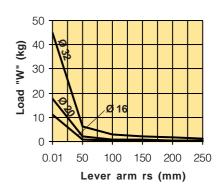
Permissible axial loads, vertical mounting

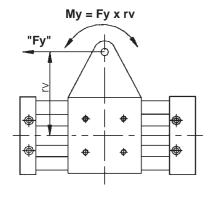
Ø	Max. Load WT* (kg)	Max. r2 (mm)
16	5	122
20	10	142
32	24	174

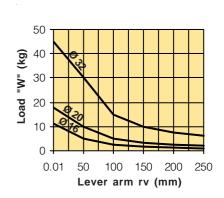
^{*} at 6,5 bar

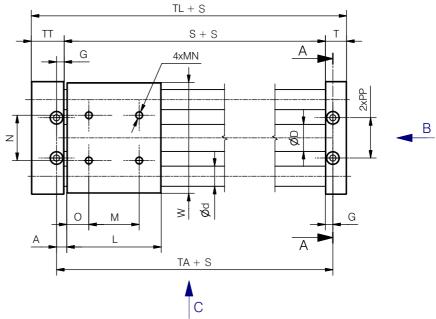




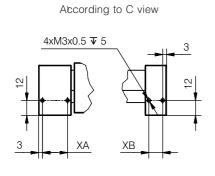

W = Load guided by external device

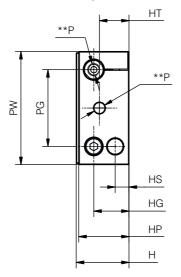

W1 = mounting direct onto cylinder

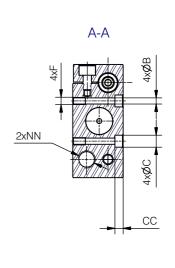

WT = Load weight + guiding device weight + friction effort



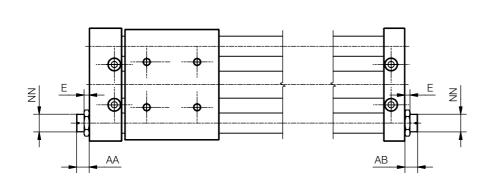
Dimensions

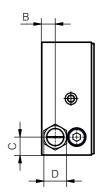

** = Air supply ports


S = Stroke


x = Deep

According to B view


Ø	Α	ØB	øс	CC	ØD	Ød	F	G	Н	HP	HG	HS	НТ	L	М	N	MN
16	8	4,3	8	4,5	17,4	12	M5x0,8 x 10	6	34	33,5	25	12	21,5	65	34	30	M5 x 0,8 x 8
20	8	5,5	9,5	6,5	21,4	16	M6x1 x 10	6	42	40	28	12	23,5	75	40	36	M6 x 1 x 10
32	13,5	8,7	14	8	33,6	20	M10x1,5 x 15	10	66	64	46	20	41	91	60	50	M8 x 1,25 x 12

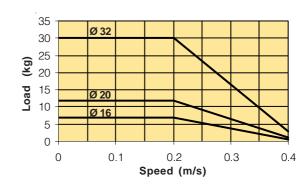

Ø	NN	0	Р	PG	PW	PP	Т	π	s	TA	TL	W	XA	ХВ
16	M10 x 1 x 6	15.5	M5 x 0,8	50	70	27	14	23	69	81	106	68	17	8
20	M14 x1,5 x 7	17.5	G1/8	61	90	32	17	26	79	91	122	88	20	11
32	M20 x 1,5 x 7	15.5	G1/8	86	122	50	20	28	97	117	145	118	22	14

Option External adjustable rubber bumpers

Dimensions

Ø	AA	AB	В	С	D	E	NN
16	7,5	6,5	12	10	14	4	M10 X 1
20	10	10	11	14,5	18	4	M14 X1,5
32	11	12	20	18	26	8	M20 X 1,5

Option External hydraulic shock absorbers


Loads / Speeds diagram

The opposite diagram points the P1Z cylinders maxi capacities.

If the cross-section point between speed and load is under the curves,

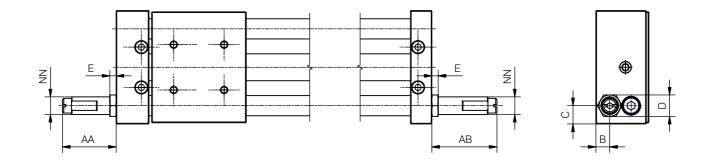
it is imperative to fit hydraulic shock absorbers to prevent cylinders

damage.

Example:

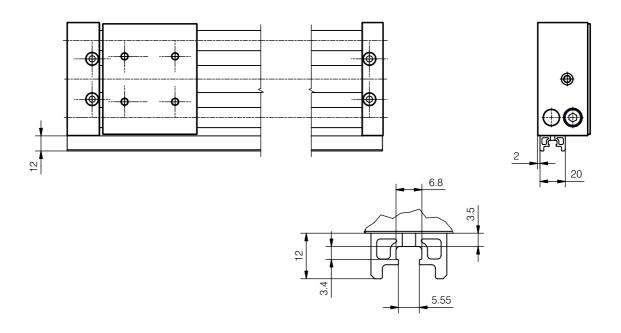
Say a \emptyset 32 mm cylinder with a 0,3 m/s speed and 25 kg load

Choose hydraulic shock absorbers option


Say a Ø 20mm cylinder with 0,2 m/s speed and 10 kg load

Choose rubber bumpers option

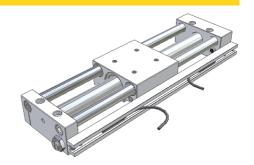
Option External hydraulic shock absorbers


Dimensions

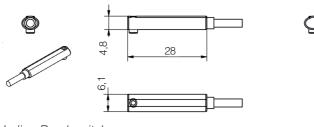
Ø	AA	AB	В	С	D	Ε	NN
16	18	27	12	10	13	3	M10 X 1
20	50	59	11	14,5	17	5	M14 X1,5
32	56	66	20	18	24	6	M20 X 1,5

Option Rail

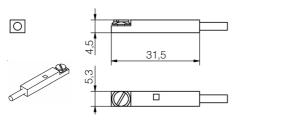
Dimensions


Valid for the 3 diameters

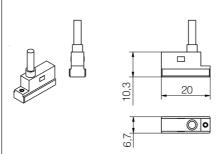
Detection


Reed switches and Sensors mounting is possible on one cylinder side only.

External aluminium profile integrates 1 T-slot.



Dimensions (mm)

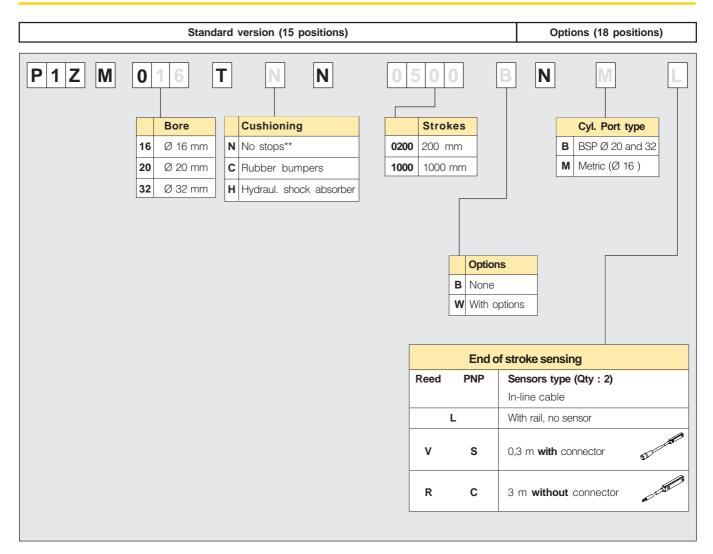


In-line Reed switches

Switches or Sensors with connection at 90°

Technical data

Magnetic switches (Reed)


Output function	Cable length (m)	Connection	Max. current (mA)	Voltage range (VCA/CC)	Mass (kg)	Protection number	Operating temperature (°C)	Order code
NO	0,3	at 90° with connector	100	10-120	0,005	IP 67	-25 to +75	P8S-SRTHX
NO	0,3	Straight with connector	100	10-120	0,005	IP 67	-25 to +75	P8S-GSSHX
NO	3,0	at 90° without connector	100	10-120	0,030	IP 67	-25 to + 75	P8S-SRELX
NO	3,0	Straight without connector	100	10-120	0,030	IP 67	-25 to +75	P8S-GSFLX

Magneto-inductive Sensors (PNP-NPN)

1 or 10 m cable upon request

Output function	Cable length (m)	Connection	Max. current (mA)	Voltage range (CC)	Mass (kg)	Protection number	Operating temperature (°C)	Order code
PNP, NO	0,3	at 90° with connector	150	10-30	0,005	IP 67	-25 to +75	P8S-SPTHXD
PNP, NO	0,3	Straight with connector	150	10-30	0,005	IP 67	-25 to +75	P8S-GPSHX
PNP, NO	3,0	at 90° without connector	150	10-30	0,030	IP 67	-25 to +75	P8S-SPELXD
PNP, NO	3,0	Straight without connector	150	10-30	0,030	IP 67	-25 to +75	P8S-GPFLX
NPN, NO	0,3	at 90° with connector	150	10-30	0,005	IP 67	-25 to +75	P8S-SNTHX
NPN, NO	0,3	Straight with connector	150	10-30	0,005	IP 67	-25 to +75	P8S-GNSHX
NPN, NO	3,0	Straight without connector	150	10-30	0,030	IP 67	-25 to +75	P8S-GNFLX

** Choose an external cushioning in case of very slow operating.

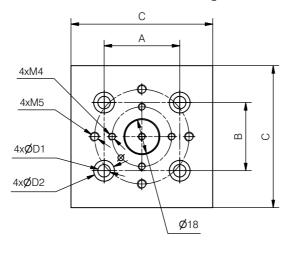
Ø	Strokes (mm)
16	0 to 750
20	0 to 1000
32	0 to 1500

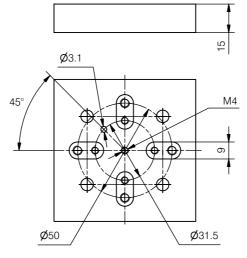
Order code examples :

- P1ZM016TCN0100B cylinder bore 16 mm stroke 100 mm supplied with rubber bumpers without rail

- P1ZM020THN1000WNBL cylinder bore 20 mm stroke 1 m with hydraulic shock absorbers and rail for sensors

Interface with 3D® Modular range


It is possible to have P1Z cylinder mounting arranged with modular units from $3D^{\otimes}$ Automation product range.


An interface is fitted between the mobile carriage and the mounting kit of the carried unit.

Possible 90° rotation of mounting kit

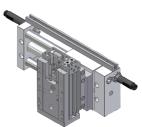
This plate can only be fitted on the guided version.

Carrier or carried mounting.

Ø	Α	В	С	D1	D2	Order code
16	34	30	65	6.6	11x 6	P5K-ZFB327
20	40	36	75	5.5	10 x 7	P5K-ZHB328
32	60	50	90	9	15 x 9	P5K-ZKB329

Interface is supplied with:

- mounting screws
- centring sleeve
- pin



Mounting arrangements

Precision Slide Tables mounting

Without flanges

Fitted onto

Ø	S12	S16	S20	S25	S12	S16	S20	S25
16	P5K-SDB204	•	•	•	P5K-SDD182	•	•	•
20	•	P5K-SFB205	•	•	•	P5K-SFD183	•	•
32	•	•	P5K-SHB206	P5K-SJB207	•	•	P5K-SHD184	P5K-SJD185

Linear or Short Strokes Units mounting

Fitted onto

Ø	S 1	S2	S 3	SSU Ø 16	SSU Ø 25
16	P5K-L1D015	•	•	P5K-S1D121	•
20	•	P5K-L2D016	•	•	P5K-S2D122
32	•	•	P5K-L3D017	•	•

• Other mounting arrangements please consult factory

Check that loads and torques on the cylinder carriage do not overstep values mentioned in the previous pages..

Mounting and order examples:

- Choose the P5K-.... interface for mounting on a \varnothing 16 mm cylinder
- Choose the P5K-SDB204 mounting kit for mounting a size 12 Precision Slide Table with flanges onto a \varnothing 16 mm cylinder

Mounting arrangements

Wrist Rotates mounting

fitted onto

Ø	WR2	WR3	WR4
16	P5K-W2F012	•	•
20	•	P5K-W3F013	•
32	•	•	P5K-W4F014

config. 1 Gripper mounting

fitted	
onto	

Ø	1	2	3	4	5	3H2
16	P5K-G1B000	P5K-G2B002	•	•	•	•
20	•	P5K-G2 B002	P5K-G3B004	•	•	P5K-G2B048
32	•	•	•	P5K-G4B006	P5K-G5B008	•

config. 2 Gripper mounting

fitted onto

Ø	1	2	3	4	5	3H2
16	P5K-G1F001	P5K-G2F003	•	•	•	•
20	•	P5K-G2F003	P5K-G3F005	•	•	P5K-G2F011
32	•	•	•	P5K-G4F007	P5K-G5F009	•

Check that loads and torques on the cylinder carriage do not overstep values mentioned in the previous pages.

Mounting and order example:

- Select the P5K-.... interface plate for mounting on a Ø 16 mm cylinder
- Select the P5K-G2B002 interface plate for mounting a size 2 conf. 1 Gripper on a Ø 16 mm cylinder
- Other mounting arrangements please consult factory

Spare parts

End of stroke rubber bumpers (2 pieces)

Ø	Order code
16	9129609AS
20	9129610AS
32	9129611AS

End of stroke hydraulic shock absorber (1 piece)

Ø	Order code
16	MC 25 MH-NB-2358
20	MC 150 MH-B
32	SC 300 M-3 NB

Flow controllers (1 piece)

Ø	Order code		
16	PTFL 8 PB4 M5		
20	PTFL 4 PB6-1/8		
32	PTFL 4 PB6-1/8		

Repair kits

Ø	Basic version	Guided version
16	P1ZM016SNN-R	P1ZM016GNN-R
20	P1ZM020SNN-R	P1ZM020GNN-R
32	P1ZM032SNN-R	P1ZM032GNN-R

